Source code for policyengine_core.populations.population

import traceback
from typing import TYPE_CHECKING, Any, List, Optional, Container

import numpy
from numpy.typing import ArrayLike

from policyengine_core import projectors
from policyengine_core.entities import Entity, Role
from policyengine_core.holders import Holder
from policyengine_core.periods.period_ import Period
from policyengine_core.populations import config
from policyengine_core.projectors import Projector

if TYPE_CHECKING:
    from policyengine_core.simulations import Simulation


[docs]class Population: def __init__(self, entity: Entity): self.simulation: "Simulation" = None self.entity = entity self._holders = {} self.count = 0 self.ids = []
[docs] def clone(self, simulation: "Simulation") -> "Population": result = Population(self.entity) result.simulation = simulation result._holders = { variable: holder.clone(result) for (variable, holder) in self._holders.items() } result.count = self.count result.ids = self.ids return result
[docs] def has_any_input(self, variable_name: str) -> bool: return len(self.get_holder(variable_name).get_known_periods()) > 0
[docs] def empty_array(self) -> numpy.ndarray: return numpy.zeros(self.count)
[docs] def filled_array(self, value: Any, dtype: Any = None) -> numpy.ndarray: return numpy.full(self.count, value, dtype)
def __getattr__(self, attribute: str) -> Any: projector = projectors.get_projector_from_shortcut(self, attribute) if not projector: raise AttributeError( "You tried to use the '{}' of '{}' but that is not a known attribute.".format( attribute, self.entity.key ) ) return projector
[docs] def get_index(self, id: str) -> int: return self.ids.index(id)
# Calculations
[docs] def check_array_compatible_with_entity(self, array: numpy.ndarray) -> None: if not self.count == array.size: raise ValueError( "Input {} is not a valid value for the entity {} (size = {} != {} = count)".format( array, self.entity.key, array.size, self.count ) )
[docs] def check_period_validity( self, variable_name: str, period: Period ) -> None: if period is None: stack = traceback.extract_stack() filename, line_number, function_name, line_of_code = stack[-3] raise ValueError( """ You requested computation of variable "{}", but you did not specify on which period in "{}:{}": {} When you request the computation of a variable within a formula, you must always specify the period as the second parameter. The convention is to call this parameter "period". For example: computed_salary = person('salary', period). See more information at <https://openfisca.org/doc/coding-the-legislation/35_periods.html#periods-in-variable-definition>. """.format( variable_name, filename, line_number, line_of_code ) )
def __call__( self, variable_name: str, period: Period = None, options: Optional[Container[str]] = None, ): """ Calculate the variable ``variable_name`` for the entity and the period ``period``, using the variable formula if it exists. Example: >>> person('salary', '2017-04') >>> array([300.]) :returns: A numpy array containing the result of the calculation """ self.entity.check_variable_defined_for_entity(variable_name) self.check_period_validity(variable_name, period) if options is None: options = [] if config.ADD in options and config.DIVIDE in options: raise ValueError( "Options config.ADD and config.DIVIDE are incompatible (trying to compute variable {})".format( variable_name ).encode( "utf-8" ) ) from policyengine_core.simulations.microsimulation import ( Microsimulation, ) calculate_kwargs = {} if isinstance(self.simulation, Microsimulation): # Internal simulation code shouldn't use weights in order to avoid performance slowdowns. calculate_kwargs["use_weights"] = False calculate_kwargs["decode_enums"] = False if config.ADD in options: return self.simulation.calculate_add( variable_name, period, **calculate_kwargs ) elif config.DIVIDE in options: return self.simulation.calculate_divide( variable_name, period, **calculate_kwargs ) else: return self.simulation.calculate( variable_name, period, **calculate_kwargs ) # Helpers
[docs] def get_holder(self, variable_name: str) -> Holder: self.entity.check_variable_defined_for_entity(variable_name) holder = self._holders.get(variable_name) if holder: return holder variable = self.entity.get_variable(variable_name) self._holders[variable_name] = holder = Holder(variable, self) return holder
[docs] def get_memory_usage(self, variables: List[str] = None): holders_memory_usage = { variable_name: holder.get_memory_usage() for variable_name, holder in self._holders.items() if variables is None or variable_name in variables } total_memory_usage = sum( holder_memory_usage["total_nb_bytes"] for holder_memory_usage in holders_memory_usage.values() ) return dict( total_nb_bytes=total_memory_usage, by_variable=holders_memory_usage )
[docs] @projectors.projectable def has_role(self, role: Role) -> ArrayLike: """ Check if a person has a given role within its `GroupEntity` Example: >>> person.has_role(Household.CHILD) >>> array([False]) """ self.entity.check_role_validity(role) group_population = self.simulation.get_population(role.entity.plural) if role.subroles: return numpy.logical_or.reduce( [ group_population.members_role == subrole for subrole in role.subroles ] ) else: return group_population.members_role == role
[docs] @projectors.projectable def value_from_partner( self, array: ArrayLike, entity: Entity, role: Role ) -> ArrayLike: self.check_array_compatible_with_entity(array) self.entity.check_role_validity(role) if not role.subroles or not len(role.subroles) == 2: raise Exception( "Projection to partner is only implemented for roles having exactly two subroles." ) [subrole_1, subrole_2] = role.subroles value_subrole_1 = entity.value_from_person(array, subrole_1) value_subrole_2 = entity.value_from_person(array, subrole_2) return numpy.select( [self.has_role(subrole_1), self.has_role(subrole_2)], [value_subrole_2, value_subrole_1], )
[docs] @projectors.projectable def get_rank( self, entity: Entity, criteria: ArrayLike, condition: ArrayLike = True ) -> ArrayLike: """ Get the rank of a person within an entity according to a criteria. The person with rank 0 has the minimum value of criteria. If condition is specified, then the persons who don't respect it are not taken into account and their rank is -1. Example: >>> age = person('age', period) # e.g [32, 34, 2, 8, 1] >>> person.get_rank(household, age) >>> [3, 4, 0, 2, 1] >>> is_child = person.has_role(Household.CHILD) # [False, False, True, True, True] >>> person.get_rank(household, - age, condition = is_child) # Sort in reverse order so that the eldest child gets the rank 0. >>> [-1, -1, 1, 0, 2] """ # If entity is for instance 'person.household', we get the reference entity 'household' behind the projector entity = ( entity if not isinstance(entity, Projector) else entity.reference_entity ) positions = entity.members_position biggest_entity_size = numpy.max(positions) + 1 filtered_criteria = numpy.where(condition, criteria, numpy.inf) ids = entity.members_entity_id # Matrix: the value in line i and column j is the value of criteria for the jth person of the ith entity matrix = numpy.asarray( [ entity.value_nth_person( k, filtered_criteria, default=numpy.inf ) for k in range(biggest_entity_size) ] ).transpose() # We double-argsort all lines of the matrix. # Double-argsorting gets the rank of each value once sorted # For instance, if x = [3,1,6,4,0], y = numpy.argsort(x) is [4, 1, 0, 3, 2] (because the value with index 4 is the smallest one, the value with index 1 the second smallest, etc.) and z = numpy.argsort(y) is [2, 1, 4, 3, 0], the rank of each value. sorted_matrix = numpy.argsort(numpy.argsort(matrix)) # Build the result vector by taking for each person the value in the right line (corresponding to its household id) and the right column (corresponding to its position) result = sorted_matrix[ids, positions] # Return -1 for the persons who don't respect the condition return numpy.where(condition, result, -1)