SSI#
The Supplemental Security Income (SSI) program is a federal program that provides cash benefits to low-income elderly people and people with disabilities. Some states also supplement the federal SSI with additional payments.
Examples#
A single eligible person—someone with a disability, blindness, or 65 years of age or older, and who holds $2,000 in assets or less–will receive the full $841 monthly benefit if they have no other income. Their benefit phases out with earned income until the person earns $1,770 per month, at which point they are no longer eligible.
If they have $500 per month in unearned income (for example, Social Security), they will receive $361 if they have no earned income, and will continue to receive some benefit until they earn $790 per month.
from policyengine_us import IndividualSim
import pandas as pd
import plotly.express as px
LIGHT_GRAY = "#F5F5F5"
GRAY = "#BDBDBD"
BLUE = "#5091cc"
LIGHT_BLUE = "lightblue"
DARK_BLUE = "darkblue"
def make_ssi(social_security=0, vary="employment_income"):
sim = IndividualSim(year=2022)
sim.add_person(
name="head", is_ssi_disabled=True, social_security=social_security
)
sim.vary(vary, max=30_000, step=120)
employment_income = sim.calc("employment_income")[0]
ssi = sim.calc("ssi")[0]
mtr = -sim.deriv("ssi", "employment_income", wrt_target="head")
return pd.DataFrame(
dict(
employment_income=employment_income,
ssi=ssi,
mtr=mtr,
social_security=social_security,
)
)
# Compute for different values of Social Security income.
l = []
for ss in [0, 500 * 12]:
l.append(make_ssi(social_security=ss))
df = pd.concat(l)
# Make monthly.
df[["employment_income", "ssi", "social_security"]] /= 12
df.social_security = "$" + df.social_security.astype(int).astype(str)
LABELS = dict(
employment_income="Monthly employment income",
ssi="Monthly Supplemental Security Income",
mtr="SSI marginal tax rate",
social_security="Monthly Social Security",
)
COLOR_MAP = {"$0": DARK_BLUE, "$500": BLUE}
fig = px.line(
df,
"employment_income",
"ssi",
color="social_security",
labels=LABELS,
title="Supplemental Security Income for a single person",
color_discrete_map=COLOR_MAP,
)
fig.update_layout(
xaxis_tickformat="$,",
yaxis_tickformat="$,",
plot_bgcolor="white",
xaxis_gridcolor=LIGHT_GRAY,
yaxis_gridcolor=LIGHT_GRAY,
)
fig.show()
SSI phases out at 50% with respect to employment income, after exemptions.
fig = px.line(
df,
"employment_income",
"mtr",
color="social_security",
labels=LABELS,
title="SSI marginal tax rate for a single eligible person",
color_discrete_map=COLOR_MAP,
)
fig.update_layout(
xaxis_tickformat="$,",
yaxis_tickformat=".0%",
plot_bgcolor="white",
xaxis_gridcolor=LIGHT_GRAY,
yaxis_gridcolor=LIGHT_GRAY,
)
fig.show()
Single parent with two disabled children#
With no Social Security, the household will receive the maximum combined SSI payment of $1,682 until the parent’s income reaches $1,840, at which point it starts phasing out at 50 cents on the dollar until it’s fully phased out at $5,220 monthly income.
def make_ssi(social_security=0, vary="employment_income"):
sim = IndividualSim(year=2022)
sim.add_person(name="parent", social_security=social_security)
sim.add_person(name="child1", age=10, is_ssi_disabled=True)
sim.add_person(name="child2", age=8, is_ssi_disabled=True)
sim.add_tax_unit(name="tax_unit", members=["parent", "child1", "child2"])
sim.vary(vary, max=72_000, step=120)
employment_income = sim.calc("employment_income")[0]
ssi = sim.calc("tax_unit_ssi")[0]
mtr = -sim.deriv("tax_unit_ssi", "employment_income", wrt_target="parent")
return pd.DataFrame(
dict(
employment_income=employment_income,
ssi=ssi,
mtr=mtr,
social_security=social_security,
)
)
# Compute for different values of Social Security income.
l = []
for ss in [0, 500 * 12]:
l.append(make_ssi(social_security=ss))
df = pd.concat(l)
# Make monthly.
df[["employment_income", "ssi", "social_security"]] /= 12
df.social_security = "$" + df.social_security.astype(int).astype(str)
fig = px.line(
df,
"employment_income",
"ssi",
color="social_security",
labels=LABELS,
title="Supplemental Security Income for a single parent and two disabled children",
color_discrete_map=COLOR_MAP,
)
fig.update_layout(
xaxis_tickformat="$,",
yaxis_tickformat="$,",
plot_bgcolor="white",
xaxis_gridcolor=LIGHT_GRAY,
yaxis_gridcolor=LIGHT_GRAY,
)
fig.show()
The parent faces a 50% marginal tax rate over the phase-out range.
fig = px.line(
df,
"employment_income",
"mtr",
color="social_security",
labels=LABELS,
title="SSI marginal tax rate for a single parent of two disabled children",
color_discrete_map=COLOR_MAP,
)
fig.update_layout(
xaxis_tickformat="$,",
yaxis_tickformat=".0%",
plot_bgcolor="white",
xaxis_gridcolor=LIGHT_GRAY,
yaxis_gridcolor=LIGHT_GRAY,
)
fig.show()